Graphs and Genomes Michael Schatz

July 26, 2013 CSHL Undergraduate Research Program

Outline

- I. Graph Searching
- 2. Assembly by analogy
- 3. Genome Assembly

Biological Networks

& FRESS

Figure 5 Putative regulatory elements shared between groups of correlated and anticorrelated genes

- Nodes
 - People, Proteins, Genes, Neurons, Sequences, Numbers, ...
- Edges
 - A is connected to B
 - A is related to B
 - A regulates B
 - A precedes B
 - A interacts with B
 - A activates B

- ...

Graph Types

Representing Graphs

<u>Tools</u> Matlab: <u>http://www.mathworks.com/</u> Graphviz: <u>http://www.graphviz.org/</u> Gephi: <u>https://gephi.org/</u> Cytoscape: <u>http://www.cytoscape.org/</u> digraph G { A->B B->C A->C } dot –Tpdf -og.pdf g.dot

Network Characteristics

	C. elegans	D. melanogaster	S. cerevisiae		
# Nodes	2646	7464	4965		
# Edges	4037	22831	17536		
Avg. / Max Degree	3.0 / 187	6.1 / 178	7.0 / 283		
# Components	109	66	32		
Largest Component	2386	7335	4906		
Diameter	14	12	11		
Avg. Shortest Path	4.8	4.4	4.1		
Data Sources	2H	2x2H, TAP-MS	8x2H, 2xTAP, SUS		
Degree Distributions	some regular to the second sec	solo optimized and the solution of the solutio	100 100 100 100 100 100 100 100		

Small World: Avg. Shortest Path between nodes is small **Scale Free**: Power law distribution of degree – preferential attachment

Network Motifs

- Network Motif
 - Simple graph of connections
 - Exhaustively enumerate all possible 1, 2, 3, ... k node motifs
- Statistical Significance
 - Compare frequency of a particular network motif in a real network as compared to a randomized network
- Certain motifs are "characteristic features" of the network

Network	Nodes	Edges	Nreal	$N_{\rm rand} \pm {\rm SD}$	Z score	N _{real}	$N_{\rm rand} \pm {\rm SD}$	Z score	Nreal	$N_{\rm rand} \pm {\rm SD}$	Z score
Gene regulat (transcriptio				X ₩ Y ₩ Z	Feed- forward loop	x	₹ ₩	Bi-fan			
E. coli	424	519	40	7 ± 3	10	203	47 ± 12	13			
S. cerevisiae*	685	1,052	70	11 ± 4	14	1812	300 ± 40	41			
Neurons				X ₩ ¥ ₩ Z	Feed- forward loop	x	₩ ₩	Bi-fan	¥" ¥¥	κ Ν Ν Ν	Bi- parallel
C. elegans†	252	509	125	90 ± 10	3.7	127	55 ± 13	5.3	227	35 ± 10	20
Food webs				X ♥ Y ♥ Z	Three chain	и У Ч	N N Z	Bi- parallel			
Little Rock	92	984	3219	3120 ± 50	2.1	7295	2220 ± 210	25			
Ythan	83	391	1182	1020 ± 20	7.2	1357	230 ± 50	23			
St. Martin	42	205	469	450 ± 10	NS	382	130 ± 20	12			
Chesapeake	31	67	80	82 ± 4	NS	26	5 ± 2	8			
Coachella	29	243	279	235 ± 12	3.6	181	80 ± 20	5			
Skipwith	25	189	184	150 ± 7	5.5	397	80 ± 25	13			
B. Brook	25	104	181	130 ± 7	7.4	267	30 ± 7	32			
Electronic cii (forward logi				X ₩ Y ₩ Z	Feed- forward loop	x	₩ W	Bi-fan	¥ ² У Ч		Bi- parallel
s15850	10,383	14,240	424	2 ± 2	285	1040	1 ± 1	1200	480	2 ± 1	335
s38584	20,717	34,204	413	10 ± 3	120	1739	6 ± 2	800	711	9 ± 2	320
s38417	23,843	33,661	612	3 ± 2	400	2404	1 ± 1	2550	531	2 ± 2	340
s9234	5,844	8,197	211	2 ± 1	140	754	1 ± 1	1050	209	1 ± 1	200
s13207	8,651	11,831	403	2 ± 1	225	4445	1±1	4950	264	2 ± 1	200
Electronic ci (digital fracti		ipliers)	1 x←	z	Three- node feedback loop	x	₩ W	Bi-fan	x− ↑ z ≤	$\rightarrow Y$ \downarrow $\swarrow W$	Four- node feedbac loop
s208	122	189	10	1±1	9	4	1 ± 1	3.8	5	1 ± 1	5
s420	252	399	20	1 ± 1 1 ± 1	18	10	1 ± 1 1 ± 1	10	11	1 ± 1 1 ± 1	11
s838‡	512	819	40	1±1	38	22	1±1	20	23	1 ± 1	25
World Wide	Web			X ♥Y ♥Z	Feedback with two mutual dyads	$X \leftarrow X$	S → z	Fully connected triad		∧ > z	Uplinke mutual dyad

Network Motifs: Simple Building Blocks of Complex Networks Milo et al (2002) Science. 298:824-827

Modularity

- Community structure
 - Densely connected groups of vertices, with only sparser connections between groups
 - Reveals the structure of large-scale network data sets

- Modularity
 - The number of edges falling within groups minus the expected number in an equivalent network with edges placed at random
 - Larger positive values => Stronger community structure
 - Optimal assignment determined by computing the eigenvector of the modularity matrix

Modularity and community structure in networks. Newman ME (2006) *PNAS*. *103*(23) 8577-8582

Random Prob. (product of degrees)

Kevin Bacon and Bipartite Graphs

BFS and TSP

- BFS computes the shortest path between a pair of nodes in $O(|E|) = O(|N|^2)$
- What if we wanted to compute the shortest path visiting every node once?
 - Traveling Salesman Problem

Greedy Search

Greedy Search

Greedy Search

cur=graph.randNode()
while (!done)
next=cur.getNextClosest()

Greedy: ABDCA = 5+8+10+50=73Optimal: ACBDA = 5+11+10+12=38

Greedy finds the global optimum only when

- I. Greedy Choice: Local is correct without reconsideration
- 2. Optimal Substructure: Problem can be split into subproblems

Optimal Greedy: Making change with the fewest number of coins

TSP Complexity

- No fast solution
 - Knowing optimal tour through n cities doesn't seem to help much for n+1 cities

[How many possible tours for n cities?]

- Extensive searching is the only provably correct algorithm
 - Brute Force: O(n!)
 - ~20 cities max
 - 20! = 2.4×10^{18}
 - Branch-and-Bound can often help

TSP and **NP-complete**

- TSP is one of many extremely hard problems of the class NP-complete
 - Extensive searching is the only way to find an exact solution
 - Often have to settle for approx. solution

- WARNING: Many biological problems are in this class
 - Find a tour the visits every node once (Genome Assembly)
 - Find the smallest set of vertices covering the edges (Essential Genes)
 - Find the largest clique in the graph (Protein Complexes)
 - Find the highest mutual information encoding scheme (Neurobiology)
 - Find the best set of moves in tetris
 - ...
 - http://en.wikipedia.org/wiki/List_of_NP-complete_problems

Outline

- I. Graph Searching
- 2. Assembly by analogy
- 3. Genome Assembly

Shredded Book Reconstruction

Dickens accidentally shreds the first printing of <u>A Tale of Two Cities</u>
 – Text printed on 5 long spools

It was	s thevbesthef	bes tinfes nite	syais tilaes toloristor	of times,	it was the	a ggebf	v isisolom it	itwavashe	abe aga	ofistolistanes	as,
It was	s the vbesthe	of times, it	was the ne wor	st of times	s, it was the	the age	voisotoziotozio	nwiats the	wagetbefa	agtistfnfoolish	ness,
It was	s tinevasbetet	bésimésiniter	yas walaelworstr	of timas ,eis	t, it was the	age of w	visdom, i	it was t	he age of	f i sbolisk ne	ss,
It was	s t the sold se	bésimes inites	s, vitasvabælveonstr	of times,es	it was the	age of	vi sciedo,ni t,	, itavas ht	hæg age f f	o olisbolisbne	ss,
It w	valst tilnæsbidiset	b£sime simei	s, utawabelwoonstr	of of times	, it was the	age of o	fi zdscho mi,	itawatsht	hæge ælgfæ	olisbolistsne:	ss,

- How can he reconstruct the text?
 - 5 copies x 138, 656 words / 5 words per fragment = 138k fragments
 - The short fragments from every copy are mixed together
 - Some fragments are identical

Greedy Reconstruction

The repeated sequence make the correct reconstruction ambiguous

• It was the best of times, it was the [worst/age]

Model sequence reconstruction as a graph problem.

de Bruijn Graph Construction

- $D_k = (V, E)$
 - V = All length-k subfragments (k < l)
 - E = Directed edges between consecutive subfragments
 - Nodes overlap by k-1 words

- Locally constructed graph reveals the global sequence structure
 - Overlaps between sequences implicitly computed

de Bruijn, 1946 Idury and Waterman, 1995 Pevzner, Tang, Waterman, 2001

de Bruijn Graph Assembly

de Bruijn Graph Assembly

Outline

- I. Genome Assembly by Analogy
- 2. Graph Searching
- 3. Genome Assembly

Milestones in Genome Assembly

Nature Vol. 265 February 24 1977

articles

Nucleotide sequence of bacteriophage $\Phi X174 DNA$

F. Sanger, G. M. Air^{*}, B. G. Barrell, N. L. Brown⁺, A. R. Coulson, J. C. Fiddes, C. A. Hutchison III^{*}, P. M. Slocombe⁴ & M. Smith^{*} MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB: 2011, UK

A DNA sequence for the genome of bacteriophage 0X174 of approximately. 5375 meterionic has been determined using the rapid and simple plus and misure method. The production of the protein amy of the frankmer responsible for the production of the protein of the mine known genes of the organism, including initiation and termination sets for the protein and RNAs. Two pairs of geness are coiled by the more region of DNA using different reading frames.	strand DNA of DNA systems expresses as the mRNA and, in certain conditions, will bind ribosomes to that a protected fragment can be isolated and sequenced. Only one major site as found. By comparison with the animo acid sequence data is initiation of the gene G proteint ¹⁰ (positions 2,104–2,413). All this stage sequencing techniques using primed synthesis with DNA polymerase were being developed ¹¹ and Sehotty and of the theorem binding site. ¹¹ This was used to prime into part of the ribosome binding site. ¹¹ This was used to prime into part of the ribosome binding site. ¹¹ This was used to prime into part of the ribosome binding site. ¹¹ This was used to prime into part of the ribosome binding site. ¹¹ This was used to prime into part of the ribosome binding site. ¹¹ This was used to prime into part of the ribosome binding site. ¹¹ This was used to prime into part of the ribosome binding site. ¹¹ This was used to prime into part of the ribosome binding site. ¹¹ This was used to prime into part of the ribosome binding site. ¹¹ This was used to prime into part of the ribosome binding site. ¹¹ This was used to prime into part of the ribosome binding site. ¹¹ This was used to prime into part of the ribosome binding site. ¹¹ This was used to prime into part of the ribosome binding site. ¹¹ This was used to prime into part of the ribosome binding site. ¹¹ This was used to prime into part of the ribosome binding site. ¹¹ This was used to prime into part of the ribosome binding site. ¹¹ This was used to prime into part of the ribosome binding site. ¹¹ This was used to prime into part of the ribosome binding site. ¹¹ This was used to prime into part of the ribosome binding site. ¹¹ This was used to prime into part of the ribosome binding site. ¹¹ This was used to prime into part of the ribosome binding site. ¹¹ This was used to prime into part of the ribosome binding site. ¹¹ This was used to prime into part of the ribosome binding site. ¹¹ This was used to prime into part of the ribosome
The genome of bacteriophage Φ X174 is a single-stranded, circular DNA of approximately 5,400 nucleotides coding for nine known proteins. The order of these geness, a determined by genetic techniques ¹⁻¹ , is A-B-C-D-E-J-F-G-H. Genes F, G and H code for structural proteins of the virus capsid, and gene J (as defined by sequence work) codes for a small basic protein	the intercistronic region between the F and G genes, using DNA polymerase and "PF-labelled triphosphates". The ribo-substitu- tion technique" facilitated the sequence determination of the labelled DNA produced. This decanaciontide-primed system was also used to develop the push and minus method'. Suitable synthetic primers are, however, difficult to prepare and as DNA for the second system and the surface and as

1977. Sanger *et al.* Ist Complete Organism 5375 bp

2000. Myers *et al.* Ist Large WGS Assembly. Celera Assembler. 116 Mbp

1995. Fleischmann *et al.* 1st Free Living Organism TIGR Assembler. 1.8Mbp

1998. C. elegans SC Ist Multicellular Organism BAC-by-BAC Phrap. 97Mbp

2010. Li *et al.* Ist Large SGS Assembly. SOAPdenovo 2.2 Gbp

Like Dickens, we must computationally reconstruct a genome from short fragments

Current Applications

Novel genomes

• Metagenomes

- Sequencing assays
 - Structural variations
 - Transcript assembly

Assembling a Genome

2. Construct assembly graph from overlapping reads

...AGCCTAGACCTACAGGATGCGCGACACGT GGATGCGCGACACGTCGCATATCCGGT...

3. Simplify assembly graph

4. Detangle graph with long reads, mates, and other links

Illumina Sequencing by Synthesis Adapter "" DNA fragment 1 Adapters Dense lawn of primers 1. Prepare Attached terminus Attached Free terminus terminus 2. Attach 3. Amplify Laser 4. Image 5. Basecall

Metzker (2010) Nature Reviews Genetics 11:31-46

http://www.illumina.com/documents/products/techspotlights/techspotlight_sequencing.pdf

Typical contig coverage

Imagine raindrops on a sidewalk

Histogram of balls in each bin Total balls: 1000 Empty bins: 361

Balls in Bins Ix

Histogram of balls in each bin Total balls: 2000 Empty bins: 142

Balls in Bins 2x

Histogram of balls in each bin Total balls: 3000 Empty bins: 49

Balls in Bins 3x

Histogram of balls in each bin Total balls: 4000 Empty bins: 17

Balls in Bins 4x

Histogram of balls in each bin Total balls: 5000 Empty bins: 7

Balls in Bins 5x

Histogram of balls in each bin Total balls: 6000 Empty bins: 3

Balls in Bins 6x

Histogram of balls in each bin Total balls: 7000 Empty bins: 2

Balls in Bins 7x

Histogram of balls in each bin Total balls: 8000 Empty bins: 1

Balls in Bins 8x

Expect Poisson distribution on depth Standard Deviation = sqrt(cov)

This is the mathematically model => reality may be much worse Double your coverage for diploid genomes

Initial Contigs

- After simplification and correction, compress graph down to its non-branching initial contigs
 - Aka "unitigs", "unipaths"

Repeats and Read Length

- Explore the relationship between read length and contig N50 size
 - Idealized assembly of read lengths: 25, 35, 50, 100, 250, 500, 1000
 - Contig/Read length relationship depends on specific repeat composition

Assembly Complexity of Prokaryotic Genomes using Short Reads. Kingsford C, Schatz MC, Pop M (2010) *BMC Bioinformatics*. 11:21.

Repetitive regions

• Over 50% of the human genome is repetitive

Repeat Type	Definition / Example	Prevalence
Low-complexity DNA / Microsatellites	$(b_1b_2b_k)^N$ where $I \le k \le 6$ CACACACACACACACACACACA	2%
SINEs (Short Interspersed Nuclear Elements)	<i>Alu</i> sequence (~280 bp) Mariner elements (~80 bp)	13%
LINEs (Long Interspersed Nuclear Elements)	~500 – 5,000 bp	21%
LTR (long terminal repeat) retrotransposons	Ту I -соріа, Ту3-дурѕу, Рао-ВЕL (~100 — 5,000 bp)	8%
Other DNA transposons		3%
Gene families & segmental duplications		4%

- If *n* reads are a uniform random sample of the genome of length *G*, we expect $k=n\Delta/G$ reads to start in a region of length Δ .
 - If we see many more reads than k (if the arrival rate is > A), it is likely to be a collapsed repeat
 - Requires an accurate genome size estimate

$$\Pr(X - copy) = \binom{n}{k} \left(\frac{X\Delta}{G}\right)^k \left(\frac{G - X\Delta}{G}\right)^{n-k} \qquad A(\Delta, k) = \ln\left(\frac{\Pr(1 - copy)}{\Pr(2 - copy)}\right) = \ln\left(\frac{\frac{(\Delta n/G)^k}{k!}e^{\frac{-\Delta n}{G}}}{\frac{(2\Delta n/G)^k}{k!}e^{\frac{-2\Delta n}{G}}}\right) = \frac{n\Delta}{G} - k\ln 2$$

Scaffolding

- Initial contigs (aka unipaths, unitigs) terminate at
 - Coverage gaps: especially extreme GC regions
 - Conflicts: sequencing errors, repeat boundaries
- Iteratively resolve longest, 'most unique' contigs
 - Both overlap graph and de Bruijn assemblers initially collapse repeats into single copies
 - Uniqueness measured by a statistical test on coverage

N50 size

Def: 50% of the genome is in contigs larger than N50


```
N50 size = 30 \text{ kbp}
```

```
(300k+100k+45k+45k+30k = 520k \ge 500kbp)
```

Note:

N50 values are only meaningful to compare when base genome size is the same in all cases

Assembly Algorithms

PacBio Error Correction & Assembly http://wgs-assembler.sf.net

- I. Correction Pipeline
 - I. Map short reads (SR) to long reads (LR)
 - 2. Trim LRs at coverage gaps
 - 3. Compute consensus for each LR

2. Error corrected reads can be easily assembled, aligned

Hybrid error correction and de novo assembly of single-molecule sequencing reads. Koren, S, Schatz, MC, et al (2012) *Nature Biotechnology*. doi:10.1038/nbt.2280

Scalpel: Haplotype Microassembly

G. Narzisi, D. Levy, I. Iossifov, J. Kendall, M. Wigler, M. Schatz

- Use assembly techniques to identify complex variations from short reads
 - Improved power to find indels
 - Trace candidate haplotypes sequences as paths through assembly graphs

Ref: ... TCAGAACAGCTGGATGAGATCTTAGCCAACTACCAGGAGATTGTCTTTGCCCGGA...

Father:	••••TCAGAACAGCTGGATGAGATCTTAGCCAACTACCAGGAGATTGTCTTTGCCCGGA••••

Mother: ...TCAGAACAGCTGGATGAGATCTTAGCCAACTACCAGGAGATTGTCTTTGCCCGGA...

- Sib: ...TCAGAACAGCTGGATGAGATCTTAGCCAACTACCAGGAGATTGTCTTTGCCCGGA...
- Aut(1): ...TCAGAACAGCTGGATGAGATCTTAGCCAACTACCAGGAGATTGTCTTTGCCCCGGA...
- Aut(2): ...TCAGAACAGCTGGATGAGATCTTACC----CCCGGGAGATTGTCTTTGCCCCGGA...

6bp heterozygous indel at chr13:25280526 ATP12A

Assembly Summary

Graphs are ubiquitous in the world

- Pairwise searching is easy, finding features is hard

Assembly quality depends on

- I. Coverage: low coverage is mathematically hopeless
- 2. Repeat composition: high repeat content is challenging
- 3. Read length: longer reads help resolve repeats
- 4. Error rate: errors reduce coverage, obscure true overlaps

Assembly is a hierarchical, starting from individual reads, build high confidence contigs/unitigs, incorporate the mates to build scaffolds

 Extensive error correction is the key to getting the best assembly possible from a given data set

Genomics Challenges

The foundations of genomics will continue to be observation, experimentation, and interpretation

- Technology will continue to push the frontier
- Measurements will be made *digitally* over large populations, at extremely high resolution, and for diverse applications

Rise in Quantitative and Computational Demands

- I. Experimental design: selection, collection & metadata
- 2. Observation: measurement, storage, transfer, computation
- 3. Integration: multiple samples, assays, analyses
- 4. Discovery: visualizing, interpreting, modeling

Ultimately limited by the human capacity to execute extremely complex experiments and interpret results

Acknowledgements

Schatz Lab Giuseppe Narzisi Shoshana Marcus James Gurtowski Alejandro Wences Hayan Lee Rob Aboukhalil Mitch Bekritsky Charles Underwood **Rushil Gupta** Avijit Gupta Shishir Horane Deepak Nettem Varrun Ramani Piyush Kansal **Greg Vurture** Aspyn Palatnick

<u>CSHL</u> Hannon Lab Gingeras Lab Iossifov Lab Levy Lab Lippman Lab Lyon Lab Martienssen Lab McCombie Lab Ware Lab Wigler Lab

IT Department

<u>NBACC</u> Adam Phillippy Sergey Koren SFARI SIMONS FOUNDATION AUTISM RESEARCH INITIATIVE

National Human Genome Research Institute

Thank You

http://schatzlab.cshl.edu/teaching/ @mike_schatz